

How do we teach maths?

This policy has been largely adapted from the White Rose Maths Hub Calculation Policy with further material added. It is a working document and will be revised and amended as necessary.

Objective \& strategy	Concrete	Pictorial	Abstract	
Combining two parts to make a whole:partwhole model	Use part part whole model. Use cubes to add two numbers together as a group or in a bar	Use pictures to add two numbers together as a group or in a bar.	$4+3=7$ $10=6+4$ Use the part-part whole diagram to move into the abstract	
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.	
Regrouping to make 10 This is an essential skill for column addition later.		Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10. $9+5=14$ 14	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?	
Represent \& use number bonds and related subtraction facts within 20	2 more than 5.		Emphasis should be on the language ' 1 more than 5 is equal to 6 .' ' 2 more than 5 is 7. ' ' 8 is 3 more than 5.'	

Objective \＆ strategy	Concrete	Pictorial	Abstract	Y2
Adding multiples of 10	Model using dienes and bead strings	Use representations for base ten．	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$	
Use known number facts Part part whole	Children explore ways of making numbers within 20	$\begin{gathered} 20=\square \\ \square+\square=20 \quad 20-\square=\square \\ \square+\square=20 \quad 20-\square=\square \end{gathered}$	$\begin{array}{ll} \square+1=16 & 16-1=\square \\ 1+\square=16 & 16-\square=1 \end{array}$	
Using known number facts		Children draw representations of H, T and O	$3+4=7$ leads to $30+40=70$ leads to $300+400=700$	
Bar model	$3+4=7$	$7+3=10$	23 25 ？ $23+25=48$	\uparrow

Objective \& strategy	Concrete	Pictorial	Abstract	19
Add a 2-digit number and ones	$17+5=22$ Use ten frame to make 'magic' ten Children explore the pattern: $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$		$17+5=22$ Explore related facts:$\begin{aligned} & 17+5=22 \\ & 5+17=22 \\ & 22-17=5 \\ & 22-5=17 \end{aligned}$22 17 5	
Add a 2-digit number and tens	Explore that the ones digit does not change		$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$	
Add two 2-digit numbers	Model using dienes, place value counters and numicon	Use number line and bridge ten using part whole if necessary	$\begin{gathered} 20+5 \\ 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$	
Add three 1-digit numbers	Combine to make 10 first if possible, or bridge 10 then add third digit	Regroup and draw representation	Combine the two numbers that make/bridge ten then add on the third number $\begin{aligned} (4)+7+6 & =10+7 \\ & =17 \end{aligned}$	

Objective \& strategy	Concrete	Pictorial	Abstract	
Taking away ones	Use physical objects, counter, cubes etc to show how objects can be taken away. $6-4=2$	Cross out drawn objects to show what has been taken away. $15-3=12$	$7-4=3$ $16-9=7$	
Counting back	Move objects away from the group, counting backwards. Move the beads along the bead string as you count back.	Count back in ones using a number line.	Put 13 in your head, count back 4. What number are you at?	
Find the difference	Compare objects and amounts Lay objects to represent bar model.	Count on using a number line to find the difference.	Hannah has 12 sweets and her sister has 5 . How many more does Hannah have than her sister?	

Objective \& strategy	Concrete	Pictorial	Abstract	
Represent and use number bonds and related subtraction facts within 20 Part Part Whole model	Link to addition. Use PPW model to model the inverse. If 10 is the whole and 6 is one of the parts, what is the other part? $10-6=4$	Use pictorial representation to show the part.	Move to using numbers within the part whole model.	
Make 10	14-9 Make 14 on the ten frame. Take 4 away to make ten, then take one more away so that you have taken 5 .	$13-7=6$ $13-7$ Jump back 3 first, then another 4. Use ten as the stopping point.	$16-8$ How many do we take off first to get to 10? How many left to take off?	
Bar model	$5-2=3$		8 2$\begin{aligned} & 10=8+2 \\ & 10=2+8 \\ & 10-2=8 \\ & 10-8=2 \end{aligned}$	

Objective \& strategy	Concrete	Pictorial	Abstract	12
Regroup a ten into ten ones	Use a pv chart to show how to change a ten into ten ones, use the term 'take and make'		$20-4=16$	
Partitioning to subtract without regrouping. 'Friendly numbers'	$34-13=21$ Use dienes to show how to partition the number when subtracting without regrouping	Children draw representations of dienes and cross off. $43-21=22$	$43-21=22$	
Make ten strategy Progression should be crossing one ten, crossing more than one ten, crossing the hundreds	Use a bead bar or bead strings to model counting to next ten and the rest.	 Use a number line to count on to next ten and then the rest.	$93-76=17$	

Objective \& strategy	Concrete	Pictorial	Abstract	
Subtracting tens and ones Year 4 subtract with up to 4 digits. Introduce decimal subtraction through context of money	234-179 Model process of exchange using numicon, dienes and then move to PV counters.	Children to draw pv counters and show their exchange-see Y3.	 Use the phrase 'take and make' for exchange.	$4-6$
Year 5-Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal	As year 4	Children to draw pv counters and show their exchange - see Y3.	${ }^{2} 8^{10} x^{1} 0{ }^{\circ} \not 8^{\prime} 6$$-\quad$2128 28,928 Use zeros for place holders $\begin{array}{r} 7^{10} x^{\prime} 6^{8} 9 \cdot 0 \\ -\quad 372 \cdot 5 \\ \hline 6796 \cdot 5 \\ \hline \end{array}$	
Year 6-Subtract with increasingly large and more complex numbers and decimal values			$\begin{array}{r} { }^{14489,699} \\ -89,949 \\ \hline 60,750 \\ \hline \times 10.5 \cdot 3 \mathrm{k} 119 \mathrm{~kg} \\ \hline 36 \cdot 080 \mathrm{~kg} \\ \hline 69 \cdot 339 \mathrm{~kg} \end{array}$	

Objective \& strategy	Concrete	Pictorial	Abstract	
Doubling	Use practical activities using manipulatives including cubes and numicon to demonstrate doubling.	Double 4 is 8 Draw pictures to show how to double numbers.	Partition a number and then double each part before recombining it back together.	
Counting in multiples	Count the groups as children are skip counting, children may use their fingers as they are skip counting.	Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 2,4,6,8,10 \\ & 5,10,15,20,25,30 \end{aligned}$	
Making equal groups and counting the total	Use manipulatives to create equal groups.	Draw to show $2 \times 3=6$ Draw and make representations.	$2 \times 4=8$	

Objective \& strategy	Concrete	Pictorial	Abstract	
Repeated addition	Use different objects to add equal groups.	There are 3 sweets in one bag. How many sweets are in 5 bags altogether? Use pictorials including number lines to solve problems.	Write addition sentences to describe objects and pictures.	
Understanding arrays	Use objects laid out in arrays to find the answers to 2 lots of 5, 3 lots of 2 etc	Draw representations of arrays to show understanding.	$\begin{gathered} 3 \times 2=6 \\ 2 \times 5=10 \end{gathered}$	

\begin{tabular}{|c|c|c|c|c|}
\hline Objective \＆ strategy \& Concrete \& Pictorial \& Abstract \& Y2

\hline Doubling \& \begin{tabular}{l}
Model doubling using dienes and PV counters．

时

局可居回回可日白

$$
40+12=52
$$

\end{tabular} \& Draw pictures and representations to show how to double numbers \& Partition a number and then double each part before recombining it back together． \&

\hline Counting in multiples of 2， $3,4,5,10$ from 0 （repeated addition） \& Count the groups as children are skip counting， children may use their fingers as they are skip counting．Use bar models．

\[
5+5+5+5+5+5+5+5=40

\] \& | Number lines，counting sticks and bar models should be used to show representation of counting in multiples． |
| :--- |
| 3 |
| 3 |
| 3 |
| 3 | \& | Count in multiples of a number aloud． |
| :--- |
| Write sequences with multiples of numbers． $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=$ \square | \&

\hline
\end{tabular}

Objective \& strategy	Concrete	Pictorial	Abstract	Y2
Multiplication is commutative	Create arrays using counters and cubes and numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity.	$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$ Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$	
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.			$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$ Show all 8 related fact family sentences.	

Objective \& strategy	Concrete	Pictorial	Abstract	Y4
Grid method recap from Y3 for 2-digits x 1-digit Move to multiplying 3-digit by 1-digit	Use pv counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows. Fill each row with 126. Add up each column, starting with the ones making any exchanges needed.	Children can represent their work with pv counters in a way they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking.	Start with multiplying by 1-digit numbers and showing the clear addition alongside the grid. $210+35=245$	
Column multiplication	Children can continue to be supported by pv counters at this tsage of multiplication. This initially is done where there is no regrouping. Eg $321 \times 2=$ 642 Corresponding long multiplcication is modelled alongside.	x 300 20 7 4 1200 80 28		

|
 strategy | Concrete | Abstract |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Division as
 sharing | | |
| Search Gordons | | |
| ITP for interactive | | |
| resources | | |,

Objective \& strategy	Concrete	Pictorial	Abstract	12
Division as sharing	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. Children use bar modelling to show and support understanding. $12 \div 4=3$	$12 \div 3=4$	
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use number lines for grouping. $12 \div 3=4$ Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group.	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?	\square_{0}^{0}

Objective \& strategy	Concrete	Pictorial	Abstract	
Division as grouping	Use cubes, counter, objects or pv counters to aid understanding. 24 divided into groups of $6=4$ $96 \div 3=32$	Continue to use bar modelling to aid solving division problems. \square $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	How many groups of 6 in 24? $24 \div 6=4$	
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rl} \operatorname{Eg} 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating eight linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \\ & 28=7 \times \\ & 428= \\ & 4 \times 7 \\ & 4=28 \div 7 \\ & 7=28 \div 4 \end{aligned}$	

Objective \& strategy	Concrete	Pictorial	Abstract	
Division with remainders	$14 \div 3=$ Divide objects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder. remainder 2 Use bar models to show division with remainders. Example without remainder: $40 \div 5$ Ask "How many 5s in 40?" Example with remainder $38 \div 6$ For larger numbers, when it becomes inefficient to count in single multiples, bigger jumps can be recorded using known facts.	Complete written divisions and show the remainder using r.	

Step 1 - a remainder in the ones

$$
\begin{gathered}
h \mathrm{t} \circ \\
041 \mathrm{R} 1 \\
\hline 165
\end{gathered}
$$

4 does not go into 1 (hundred). So combine the 1 hundred with the 6 tens (160).
4 goes into 16 four times.
4 goes into 5 once, leaving a remainder of 1 .
th ht o

8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds $(3,200)$.
8 goes into 32 four times $(3,200 \div 8=400)$
8 goes into 0 zero times (tens).
8 goes into 7 zero times, and leaves a remainder of 7

Long Division	Y6
Step 1-continued	
$\begin{array}{r} \mathrm{ht} 0 \\ 061 \\ 4 \longdiv { 2 4 7 } \\ \frac{-4}{3} \end{array}$ When dividing the ones, 4 goes into 7 one time. Multiply $1 \times 4=4$, write that four under the 7 , and subract. This finds us the remainder of 3 . Check: $4 \times 61+3=247$ $\begin{array}{r} \text { th hto } \\ 0402 \\ 4 \longdiv { 1 6 0 9 } \\ \frac{-8}{1} \end{array}$ When dividing the ones, 4 goes into 9 two times. Multiply $2 \times 4=8$, write that eight under the 9 , and subract. This finds us the remainder of 1 . Check: $4 \times 402+1=1,609$	

Long Division			Y6 ๑ \square
Step 2 - a remainder in the tens			
1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.	
$\begin{array}{r} { }^{t 0} \\ 2 \frac{2}{28} \end{array}$ Two goes into 5 two times, or 5 tens $\div 2=2$ whole tens -- but there is a remainder!	$\begin{gathered} t 0 \\ 2 \longdiv { 5 8 } \\ \frac{-4}{1} \end{gathered}$ To find it, multiply $2 \times 2=4$, write that 4 under the five, and subtract to find the remainder of 1 ten.	$\begin{array}{r} 50 \\ 29 \\ 2 \longdiv { 5 8 } \\ -4 \downarrow \\ \hline 18 \end{array}$ Next, drop down the 8 of the ones next to the leftover 1 ten. You combine the remainder ten with 8 ones, and get 18.	
1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.	
$\begin{array}{r} t \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ -\frac{4}{18} \end{array}$ Divide 2 into 18. Place 9 into the quotient.	$\begin{array}{r} 10 \\ 29 \\ 2 \longdiv { 5 8 } \\ \frac{-4}{18} \\ -18 \end{array}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract.	$\begin{array}{r} t 0 \\ 2 \longdiv { 5 8 } \\ -48 \\ \hline 18 \\ -18 \end{array}$ The division is over since there are no more digits in the dividend. The quotient is 29 .	

Step 2 - a remainder in any of the place values

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\frac{h^{n t \circ}}{2 \longdiv { 1 }}$ Two goes into 2 one time, or 2 hundreds $\div 2=1$ hundred.	$\begin{gathered} \quad \begin{array}{c} h t o \\ 1 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{0} \end{array} \end{gathered}$ Multiply $1 \times 2=2$, write that 2 under the two, and subtract to find the remainder of zero.	$\begin{gathered} h t o \\ 18 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{0} \frac{1}{7} \end{gathered}$ Next, drop down the 7 of the tens next to the zero.
Divide.	Multiply \& subtract.	Drop down the next digit.
$\begin{gathered} h 70 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \end{gathered}$ Divide 2 into 7. Place 3 into the quotient.	$\begin{gathered} n+0 \\ 2 \longdiv { 2 7 8 } \\ 2 \longdiv { - 2 7 8 } \\ -07 \\ -\quad 6 \\ \hline 1 \end{gathered}$ Multiply $3 \times 2=6$, write that 6 under the 7 , and subtract to find the remainder of 1 ten.	$\begin{gathered} h t o \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 18 \end{gathered}$ Next, drop down the 8 of the ones next to the 1 leftover ten.
1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{gathered} h 10 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 18 \end{gathered}$ Divide 2 into 18. Place 9 into the quotient.	$\begin{array}{r} h t o \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{0} 7 \\ -\quad 6 \\ \hline 18 \\ -18 \\ \hline 0 \end{array}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract to find the remainder of zero.	$\begin{aligned} & h t \circ \\ & 2 \longdiv { 2 7 8 } \\ & -\frac{2}{278} \\ & -\quad 6 \\ & \hline 18 \\ & -18 \\ & \hline 0 \end{aligned}$ There are no more digits to drop down. The quotient is 139 .

