Maths Mastery

Progression in the use of manipulatives to support learning

USE IT!

Foundation	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Real-life objects						
0-9 digit cards						
Number track to 10	Number line to 20	Number line to 100	Number line to 100	Number line including negative numbers	Number line including negative numbers	Number line including negative numbers
Numbered counting stick	Counting stick					
Tens frame	Tens frame	Tens frame				
	Place value charts Tens and ones	Place value charts Hundreds, tens and ones	Place value charts Thousands, hundreds, tens and ones	Place value charts Ten thousands, thousands, hundreds, tens, ones and tenths	Place value charts to a million and three decimal places	Place value charts to 10 million and three decimal places
Interlocking cubes Use one colour to represent one amount	Interlocking cubes Use one colour to represent one amount	Dienes	Dienes	Dienes	Dienes	Dienes
		Place value counters				
	Place value arrow cards - tens and ones	Place value arrow cards - tens and ones	Place value arrow cards - H, T, O	Place value arrow cards - Th, H, T, O	Place value arrow cards	Place value arrow cards
Part-part-whole mat	Part-part-whole mat	Part-part-whole mat	Part-part-whole model	Part-part-whole model	Part-part-whole model	Part-part-whole model

Bar model with real- life objects	Bar model with real life objects/pictorial objects/representative objects eg. counters	Bar model with counters /Dienes progressing to numbers	Bar model with numbers	Bar model with numbers	Bar model with numbers	
Bead strings - ten	Bead strings - twenty	Bead strings - hundred				
Numicon shapes						
			Cuisenaire rods	Cuisenaire rods	Cuisenaire rods	Cuisenaire rods
Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount

Maths Working Wall - DISPLAY IT!

Build it!	Use a real-life representation of the concept which children can see, touch and feel.	Show a pictorial representation of the concept.
Draw it!	Show the mathematical representation of the concept.	$6 \times 2=12$ $2 \times 6=12$ $12 \div 2=6$ $12 \div 6=2$ Saltors of 12 are: $1,2,3,4,6$ and 12
Solve it!	Encourage children to practice the concept. Interactive opportunity - ask children to respond to questions, encourage them to add what they know, leave homework for children to take to master the concept.	$1 \times 2=2$ $2 \times 2=4$ $3 \times 2=6$ etc.
Practise it!	Set a challenge to be solved. Interactive opportunity - leave real-life objects or manipulatives for children to use to help solve the challenge.	How many different ways can 12 eggs be arranged into arrays? What if you try 24 eggs?
Challenge it!	Use vocabulary related to the concept	
Say it!	Multiply, times, repeated addition, array, divide, group, multiples, factors	

Classroom Visual Prompts - SEE IT!

Progression in the teaching of counting in Foundation Stage

Progression in the teaching of counting in Foundation Stage

Progression in the teaching of place value

Progression in the teaching of place value

TENS FRAME IDEAS

LIFE SIZE TEN FRAME	Create a life-size ten frame in the classroom and outdoor play area. Use counters, pennies, teddies, gingerbread men, children etc.
FLASH	Flash ten frame briefly and have children write the number on a whiteboard. Using whiteboards, rather than having children say the number, ensures that all children attempt to respond and allows the teacher to assess class progress. When the response is oral, not all child responses are audible. Encourage children to share the different strategies used to find the total number of dots for cards, "How did you see it?" This can be varied by asking children to write the number and draw the pattern they saw, or by having them build the number flashed on their own blank frame.
FLASH: ONE MORE	Once children are familiar with the basic patterns, and know them automatically, flash a 10 frame or dot card and ask them to name the number that is one more than the number flashed. Variation: ask children to give the number that is two more/one less/double/ten more than the number flashed.
I WISH I HAD TEN	Flash a dot card or ten frame showing 9 or less and say, "I wish I had 10 ". Children respond with the part that is needed to make ten. The game can focus on a single whole, or the "wish I had" number can change each time. Variation: teacher flashes card and children write the complement of ten on individual whiteboards with dry erase markers.
I WISH I HAD 12	As above but children respond with how many more are needed to make twelve. Children should be confident in facts of 10 before this is attempted. For example to go from 8 to 12 , they should realise they need 2 more to get to 10 , then 2 more to 12.2 and 2 is 4 . Variation: Children draw an empty number line on their whiteboards to show the two jumps used to get to the target number.
1 MORE 1 LESS 10 MORE 10 LESS	The following four prompts are written on the board: one more one less ten more ten less The teacher flashes a dot or ten frame card as the 'starting number'. The first child selects one prompt. For example, if the teacher flashes a card showing ' 5 ' the first child might say, "one more than 5 is 6 ", the second child might say, "ten more than 6 is 16 ", and the third child might say, "one less than 16 is 15 ". Continue until all children have had a turn.
TEEN FRAME FLASH (11-20)	Teen Frame Flash (11-20) Once children are subitizing ten frame patterns $0-10$, cards showing larger numbers (i.e. more than one ten frame) should be introduced. Use mental math sessions with the following key questions: How many? How many more than 10? As children become familiar with the 'teen' patterns introduce further questions to develop number relationships. - What is one more/two more than the number Iflashed? - What is one less/two less than the number Iflashed? - How far away is the number I flashed from twenty? - Double the number I flash. - What is the near Doubles fact? (i.e., if 15 is flashed, children answer $7+8$)
MULTIPLES	Flash a tens frame and ask children to give you the product if the number you flash was multiplied by 2,5 etc.

Progression in the teaching of calculations

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on. Regrouping to make 10.	Adding three single digits. Column method no regrouping	Column methodregrouping. (up to 3 digits)	Column methodregrouping. (up to 4 digits)	Column methodregrouping. (with more than 4 digits) (Decimals- with the same amount of decimal places)	Column methodregrouping. (Decimals- with different amounts of decimal places)
Subtraction	Taking away ones Counting back Find the difference Part whole model Make 10	Counting back Find the difference Part whole model Make 10 Column method- no regrouping	Column method with regrouping. (up to 3 digits)	Column method with regrouping. (up to 4 digits)	Column method with regrouping. (with more than 4 digits) (Decimals- with the same amount of decimal places)	Column method with regrouping. (Decimals- with different amounts of decimal places)
Multiplication	Doubling Counting in multiples Arrays (with support)	Doubling Counting in multiples Repeated addition Arrays- showing commutative multiplication	Counting in multiples Repeated addition Arrays- showing commutative multiplication Grid method	Column multiplication (2 and 3 digit multiplied by 1 digit)	Column multiplication (up to 4 digit numbers multiplied by 1 or 2 digits)	Column multiplication (multi digit up to 4 digits by a 2 digit number)

Division
Sharing objects into groups Division as grouping

Division within arrays Division with a remainder
Short division (2 digits by 1 digit- concrete and pictorial)

Division within arrays	Short division (up to 4 digits by a 1
remainder with a	digit number interpret
Short division (up to 3	remainders appropriately for the digits by 1 digit- context)

Division within arrays \quad Short division
(up to 4 digits by a 1
Short division
Long division
(up to 4 digits by a 2
digit number- interpret remainders as whole numbers, fractions or round)

Progression in the teaching of calculations

Progression in Calculations Policy

Make the larger number with the Dienes or place value counters. Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens for ten ones.
Now I can subtract my ones.

Now look at the tens, can I take away 8 tens easily? I need to exchange one hundred for ten tens.

Now I can take away eight tens and complete my subtraction

Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount.

Draw the counters onto a place value grid and show what has been taken away by crossing the counters out as well as clearly showing the exchanges made.

When confident, children can find their own way to record the exchange/regrouping.

Children can start their formal

 written method by partitioning the number into clear place value columns.```
836-254=582
 **0
 200 50
 500\quad80\quad2
```

Moving forward the children use a more compact method.
$728-582=146$
${ }^{6} 7 \begin{array}{lll}7 & 12 & 8\end{array}$
$\begin{array}{lll}7 & 8 & 2 \\ 5 & 4 & 6\end{array}$
$\frac{5}{1} \frac{2}{4}$

This will lead to an understanding of subtracting any number including decimals.

|  | 5 | 12 |  | 1 |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 6 | 3 |  | 0 |
|  | 2 | 6 | . | 5 |
| 2 | 3 | 6 | . | 5 |



## Progression in Calculations Policy

| Objective and strategies | Concrete <br> DRAW IT! | Pictorial SOLVE IT! | Abstract <br> BUILD IT/USE IT! |
| :---: | :---: | :---: | :---: |
|  | Use practical activities to show how to double a number $5 \times 2=10$ |  |  |
| Counting in multiples | Count in multiples supported by concrete objects in equal groups | Use a number line or pictures to continue to support in counting in multiples | Count in multiples of a number aloud. <br> Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25$ |

Repeated
addition
Arrays- showing
commutative
multiplication




## Progression in Calculations Policy

| Objective and strategies | Concrete BUILD IT/USE IT! | Pictorial DRAW IT! | Abstract SOLVE IT! |
| :---: | :---: | :---: | :---: |
| Sharing objects into groups <br> If we are dividing by two we are finding one half. | I have 10 cubes; can you share them equally into 2 groups? | Children use pictures or shapes to share quantities. | One half of 14 is 7 <br> $1 / 2$ of $14=7$ <br> $14 \div 2=7$ <br> Share 9 cakes between three people. $9 \div 3=3$ |
| Division as grouping <br> If we are dividing by three we are finding one third | Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. | Use a number line to show jumps in groups. The number of jumps equals the number of groups. <br> Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. $\square$ $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$ | $28 \div 7=4$ <br> Divide 28 into 7 groups. How many are in each group? |

Division within
arrays
Division with a
remainder
Link division to multiplication by creating an array
be created.
Eg $15 \div 3=5$
$15 \div 5=3$



## Times Table Policy

Times Tables are at the heart of mental arithmetic, which in itself helps form the basis of a child's understanding and ability when working with number. Once the children have learnt their times tables by heart, they are then able to work far more confidently and efficiently through a wide range of more advanced calculations

| Reception | Year 1 | Year 2 | Year 3 | Year 4 |
| :--- | :--- | :--- | :--- | :--- |
| I can count in steps of 1 | I can count in steps of 5 | I know my 5 times table | I know my 6 times table | I know my 9 times table |
| I can count in steps of 2 | I know my 1 times table | I know my 3 times table | I know my 7 times table | I know my 8 times table |
| I can count in steps of 10 | I know my 2 times table |  |  |  |
| I can count in steps of 5 times tables |  |  |  |  |
| I know my 10 times table |  |  |  |  |

## Rote learning

Times tables will be recited daily. Chant as: 'One times two is two, two times two is four, three times two is six .....'
Also chant as 'one multiplied by two is two, once two is two, one lot of two is two, one group of two is two, the product of one and two is two etc.'

| $1 \times 1=1$ | $2 \times 1=2$ | $3 \times 1=3$ | $4 \times 1=4$ | $5 \times 1=5$ |
| :--- | :---: | :---: | :---: | :---: |
| $1 \times 2=2$ | $2 \times 2=4$ | $3 \times 2=6$ | $4 \times 2=8$ | $5 \times 2=10$ |
| $1 \times 3=3$ | $2 \times 3=6$ | $3 \times 3=9$ | $4 \times 3=12$ | $5 \times 3=15$ |
| $1 \times 4=4$ | $2 \times 4=8$ | $3 \times 4=12$ | $4 \times 4=16$ | $5 \times 4=20$ |
| $1 \times 5=5$ | $2 \times 5=10$ | $3 \times 5=15$ | $4 \times 5=20$ | $5 \times 5=25$ |
| $1 \times 6=6$ | $2 \times 6=12$ | $3 \times 6=18$ | $4 \times 6=24$ | $5 \times 6=30$ |
| $1 \times 7=7$ | $2 \times 7=14$ | $3 \times 7=21$ | $4 \times 7=28$ | $5 \times 7=35$ |
| $1 \times 8=8$ | $2 \times 8=16$ | $3 \times 8=24$ | $4 \times 8=32$ | $5 \times 8=40$ |
| $1 \times 9=9$ | $2 \times 9=18$ | $3 \times 9=27$ | $4 \times 9=36$ | $5 \times 9=45$ |
| $1 \times 10=10$ | $2 \times 10=20$ | $3 \times 10=30$ | $4 \times 10=40$ | $5 \times 10=50$ |
| $1 \times 11=11$ | $2 \times 11=22$ | $3 \times 11=33$ | $4 \times 11=44$ | $5 \times 11=55$ |
| $1 \times 12=12$ | $2 \times 12=24$ | $3 \times 12=36$ | $4 \times 12=48$ | $5 \times 12=60$ |

## Display

Times tables should be on display at the front of all classrooms, for children to use as support and reference.

Year 1: 1, 2, 5 and 10 times tables should be displayed.

Year 2: 1, 2, 3, 4, 5 and 10 times tables should be displayed


KS2: All times tables up to $12 \times 12$ should be available for children. The display must be large enough for all children to see and on table top resources where necessary.
Individual times tables should be displayed.

## Process of teaching times tables



| Children need to rehearse counting regularly in order that they MASTER the number system. Remember to count forwards and backwards orally and in written form. <br> Count from any number. <br> Ensure pronunciation of numbers is correct. |  |  |  |
| :---: | :---: | :---: | :---: |
| COUNTING IDEAS |  |  |  |
| Counting ladder - draw a ladder. Put starter number in the middle. Count forwards up the ladder and backwards down the ladder. | Chanting | Spot my error | Pass the parcel (wrap up numbers, predict next number) |
| Count in a sequence | Pendulum counting - multilink cube on a string | Speed counting | Mixed sequences eg +10, +1, -2 or missing number sequences |
| How many beats? <br> Teacher beats wood block. Children count how many times in their head. Record. Each beat could represent an amount. | Action counting | Estimate and count When counting estimated objects, place the objects in rows of 10 . | What am I counting in? Teacher counts, children work out rule. Can they then continue the pattern? |
| Counting stick (attached numbers then remove) | Count to the beat of the drum | Eyes closed counting game -blindfold one child, point to others who stand and say their name. Blindfolded child counts. | Play counting tennis eg count in steps, teacher says 5 , children say 10 (mime using racket) |
| Fizz buzz | Use shapes eg triangles and count number of sides using 3 times table | Count coins in a pot, drop in one by one | Count using constant function on calculator |
| Lead the counting into calculation so the children see the link, for example, if counting in twos, calculate using repeated addition, multiplication - include inverse operations etc. |  |  |  |


| Single steps | Multiples | Use a rule <br> eg $10+1-3$ | Missing numbers | Odds or evens |
| :--- | :--- | :--- | :--- | :--- |
| Mractions | Units of time | Mélitres/litres | Centimetres/metres | Decimals |
| Grams/kilograms | Negative numbers / <br> Temperature | Percentages | Ordinals | Money |


| VISUAL AIDS FOR COUNTING |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Number line | 100 square | Counting beads | Bead frame | Objects |
| Number snake | Number tiles | Pocket number line | Real money, large money or <br> magnetic money | Shapes eg count sides |
| Counting stick | Whiteboards making own <br> visual prompt | Objects (real life) | Base 10 <br> Hundreds, tens, units | Groups of straws |
| Real life packaging showing <br> arrays eg egg boxes, biscuit <br> packets | Wrapping paper, wall paper <br> etc. to count number of <br> shapes | Number track | Counting bead string | Tape measure or metre stick |
| Clocks | Measuring jugs | Thermometer | Bead frame/abacus | Calculator |
| Pictures | Fingers | Interactive whiteboard | Multilink/buttons etc. | Number cards |

Rehearsing old skills:
Children need to rehearse skills already taught to lead them to MASTERY.
The objectives will depend on your year group; however, it is important to keep old skills alive.
Remember to present the old skills in a variety of ways eg. Venn diagrams, Carroll diagrams, pictograms, tables, < and > signs, missing information, etc.

## REASON IT!

There is a huge emphasis on reasoning in maths lessons. Children need opportunities to justify and explain their knowledge.
Ensure you are using:
NCETM reasoning questions
NCETM mastery documents
NRICH tasks

| Odd one out | Would you rather have $\ldots$ ? | Find the mistake. | What is the same and what is <br> different? |
| :--- | :--- | :--- | :--- |
| True or false? | Here is the answer, explain how it <br> was worked out. | Always, sometimes, never | Give me a silly answer to this <br> problem. What makes it silly? |
| Tell me about this... | Prove/disprove this statement. | Convince me that ... | What if...? |
| Give me a hard and easy example of a <br> calculation you could do with these <br> numbers. <br> Give me a hard and easy example of a <br> five-digit calculation. <br> Give me a hard and easy example of a <br> question you could ask about this <br> graph/pie chart etc. | What do you notice? |  | If you know this fact, what else do <br> you know? Eg. If you know: <br> $4+6=10$ <br> You know: <br> $40+60=100$ <br> $100-40=60$ <br> The sum of 6 and 4 |
| $4000+6000=10,000$ |  |  |  |
| $100,000-60,000=40,000$ |  |  |  |
| If it is $60^{\prime \prime c l o c k ~ n o w, ~ i n ~} 4$ hours it will |  |  |  |
| be 10 o'clock. |  |  |  |

## RECALL IT!

| Rapid recalling of key facts is important in developing fluency and MASTERY. <br> As children recall facts, deepen their knowledge by reasoning in context eg. When recalling number, bonds totalling 100: 'tell me two lengths that together <br> make one metre.' |
| :--- |
| Recall number bonds |
| Recall shape names and properties |

